

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、隨著計(jì)算機(jī)斷層成像(Computed tomography,CT)和核磁共振成像(MagneticResonance imaging,MRI)在醫(yī)療臨床診斷、治療計(jì)劃的制定、以及臨床研究中應(yīng)用的越來(lái)越多,我們用計(jì)算機(jī)來(lái)輔助放射學(xué)科專家進(jìn)行圖像分割成為必須的條件,這就需要我們提供可靠的算法來(lái)分析圖像的解剖結(jié)構(gòu)、感興趣區(qū)域。但由于部分容積效應(yīng)與偏移場(chǎng)的影響,CT與MR圖像中的灰度會(huì)產(chǎn)生不同程度的變異,這成為局限這兩種圖像應(yīng)用的掣肘。
2、 基于水平集模型的圖像分割方法屬于動(dòng)態(tài)輪廓線分割方法的一種,被廣泛的應(yīng)用到醫(yī)學(xué)圖像分割當(dāng)中。水平集分割方法的優(yōu)勢(shì)主要概括為實(shí)用、便捷、迅速、魯棒性強(qiáng)。在最新的研究成果當(dāng)中,水平集方法已經(jīng)發(fā)展到了無(wú)需重新初始化,并且加入了限制能量參數(shù)的階段。本文以更好地分割灰度變異醫(yī)學(xué)圖像為目標(biāo),對(duì)之前的水平集算法提出了幾點(diǎn)改進(jìn),而且在多種醫(yī)學(xué)圖像驗(yàn)證了改進(jìn)算法的優(yōu)異的性能,具體的工作與成果如下:
1)分析了如今廣泛使用的針對(duì)灰度不均勻圖像分
3、割問(wèn)題的算法的優(yōu)點(diǎn)與劣勢(shì)。當(dāng)前的一些算法基本思想都是基于改進(jìn)能量項(xiàng),使能量泛函盡量包含全局與局部信息,但事實(shí)表明,二者很難兼得,本文將高斯核函數(shù)引入能量泛函,在圖像分割之前,對(duì)高斯函數(shù)的形狀參數(shù)進(jìn)行擬合,將全局信息捕獲,在能量泛函構(gòu)建過(guò)程中就擺脫全局能量項(xiàng)的掣肘,強(qiáng)化算法對(duì)灰度變異圖像的分割能力。
2)以一種新的獲取局部信息的方式:局部屬性基于K-means算法聚類。本文提出的局部信息獲取方法,首先定義一個(gè)局部灰度聚類函數(shù),對(duì)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 基于局部區(qū)域信息的水平集醫(yī)學(xué)圖像分割方法研究.pdf
- 圖像分割的基于局部區(qū)域的水平集方法.pdf
- 基于局部水平集和非局部MRF的SAR圖像分割方法.pdf
- 基于先驗(yàn)信息約束的水平集圖像分割方法研究.pdf
- 基于水平集的SAR圖像分割方法研究.pdf
- 基于水平集的綠化區(qū)域分割方法研究.pdf
- 基于水平集方法的運(yùn)動(dòng)對(duì)象分割.pdf
- 基于水平集的聲納圖像分割方法的研究.pdf
- 基于MRF的局部和全局最優(yōu)化圖象分割方法研究.pdf
- 基于局部核映射的水平集醫(yī)學(xué)圖像分割算法研究.pdf
- 基于圖割與水平集的超聲圖像分割方法研究.pdf
- 基于水平集的醫(yī)學(xué)超聲圖像分割方法研究.pdf
- 基于區(qū)域型水平集方法的圖像分割研究.pdf
- 基于水平集的醫(yī)學(xué)圖像快速分割方法研究.pdf
- 基于水平集的圖像分割方法研究及其應(yīng)用.pdf
- 基于水平集的多相圖像分割方法研究.pdf
- 基于區(qū)域信息的水平集醫(yī)學(xué)圖像分割
- 基于水平集方法的醫(yī)學(xué)圖像分割算法研究.pdf
- 基于變分水平集的圖像分割方法研究.pdf
- 基于水平集的圖像分割方法研究及應(yīng)用.pdf
評(píng)論
0/150
提交評(píng)論