考慮參數(shù)和近似模型不確定性的穩(wěn)健性設(shè)計(jì)優(yōu)化方法研究.pdf_第1頁
已閱讀1頁,還剩62頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、穩(wěn)健性設(shè)計(jì)優(yōu)化(Robust Design Optimization,RDO)在提高產(chǎn)品質(zhì)量的同時(shí),盡可能地降低不確定性對(duì)產(chǎn)品質(zhì)量的影響,在工程優(yōu)化領(lǐng)域得到了廣泛應(yīng)用。但是,在實(shí)際工程優(yōu)化中,常用的高精度仿真分析比較復(fù)雜且費(fèi)時(shí)較多,使得RDO的計(jì)算量異常龐大。盡管近似模型的應(yīng)用解決了RDO中計(jì)算量大的難題,但是所構(gòu)建的近似模型與真實(shí)模型之間往往存在預(yù)測(cè)誤差,這種預(yù)測(cè)誤差所產(chǎn)生的不確定性,即近似模型不確定性,對(duì) RDO結(jié)果有著重要影響。傳

2、統(tǒng)的RDO只考慮參數(shù)不確定性,而忽略了近似模型不確定性的影響,本文圍繞同時(shí)考慮參數(shù)和近似模型兩種不確定性的RDO問題展開研究。
  首先,結(jié)合常用的具有高預(yù)測(cè)精度的Kriging近似模型,實(shí)現(xiàn)了面向 RDO的綜合考慮參數(shù)和近似模型不確定性的數(shù)值積分法和有限采樣法。結(jié)合數(shù)學(xué)算例,對(duì)上述兩種方法進(jìn)行了對(duì)比,為后續(xù)基于序列采樣的RDO方法研究提供了理論基礎(chǔ)。
  其次,研究同時(shí)考慮參數(shù)和近似模型不確定性的無約束RDO問題,提出了一

3、種基于改進(jìn)單點(diǎn)序列采樣的無約束RDO方法。該方法的樣本點(diǎn)更新中采用同時(shí)考慮參數(shù)和近似模型不確定性的穩(wěn)健性期望提高準(zhǔn)則,能夠有效選擇更新樣本點(diǎn),快速逼近穩(wěn)健性最優(yōu)解。通過數(shù)學(xué)算例進(jìn)行測(cè)試分析,驗(yàn)證了所提出的方法有效性。
  最后,研究同時(shí)考慮參數(shù)和近似模型不確定性的帶約束RDO問題,提出了一種基于改進(jìn)多點(diǎn)序列采樣的帶約束RDO方法。在采樣點(diǎn)的更新準(zhǔn)則中,目標(biāo)函數(shù)和約束函數(shù)同時(shí)考慮參數(shù)和近似模型不確定性的影響,每次迭代中更新了多個(gè)空間

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論